CSC 582 - FALL 2014

A Naming Convention for Self-Describing Code
Luke Plewa, Student, Cal Poly San Luis Obispo

Abstract—Coding styles help collaborators communicate with code effectively. This is promoted through uniformity and
ease of reading. Naming conventions are a subset of coding styles that define rules for naming identifiers within code.
This paper investigates specific naming conventions in open source C code collected across a variety of authors and
applications. That investigation defines a publicly available corpus specifically for C naming conventions and reports upon
the features of that corpus. The other contribution of this paper is a naming convention whose rules are defined by the

populus.

Keywords—Naming Convention, Coding Style, Self-Describing Code, Software Engineering, Machine Learning

1 INTRODUCTION

HIS paper serves the public by describing a
Tnewly defined corpus for C-language nam-
ing conventions and a naming convention for
self-describing code defined by the populus. At
the time of this paper, there is no existing cor-
pus for C-language naming conventions. The
one described in this paper is the first of its
type. The naming convention defined in this
paper is supported through the data collected
on that corpus.

December 11, 2014

2 BACKGROUND

2.1 Naming Conventions

Naming conventions are a set of rules used for
identifiers in software engineering [10]. Vari-
ables, classes, functions, methods, etc. are all
examples of identifiers. Some naming conven-
tion rules include restricting the length of the
identifier, case (snake_case or camelCase), and
use of abbreviations or dictionary words. Good
naming conventions are useful because they
make code easier to read and convey more
information about the identifier.

o L. Plewa is with the Department of Computer Science, Cal Poly
San Luis Obispo, San Luis Obispo, CA, 93405.
E-mail: Iplewa@calpoly.edu

Manuscript received December 11, 2014.

2.2 Code Maintenance

Maintenance of code is determined to be about
60% of work involved in the project lifecycle
[5]. One of the biggest contributors to reducing
code maintenance is coding styles and more
specifically naming conventions for identifiers.
Bad naming conventions can make code main-
tenance costly [12]. By creating a better under-
standing of naming conventions, there is an
opportunity to improve software engineering
as a whole.

2.3 Self-Describing Code

Self-describing or self-documenting code is a
coding style that prefers the use of program-
ming style as a form of documentation [9].
While the self-describing code principle does
not promote the use of comments or external
documentation, there is room for programmers
to use both. The end-goal is to help others
understand the code. One of the key features
of self-describing code is good idenfitier names.
More specifically, the name of the identifier
should be able to describe the purpose of the
identifier.

3 RELATED WORK

3.1 Popular Coding Convention on GitHub
"Popular Coding Convention on GitHub” [3]
is a project done through ”“The GitHub Data

Challenge II” [4]. This project breaks down
various coding styles across various languages.



CSC 582 - FALL 2014

The languages supported are Javascript, Java,
Python, Scala, Ruby, C#, PHP. Some coding
styles that are examined include the use of
spaces versus tabs, curly brace placement in
block statements, the use of capital letters in
constants, line length, use of whitespace, and
argument definition spacing. Other language
specific coding styles are also examined. The
project looks at a specific set of projects on
GitHub, presented by the data challenge, and
provides a percentage breakdown of those
projects in terms of each coding style.

This project notably leaves out the C pro-
gramming language, which is the focus of this
paper. There is also no mention of naming
coventions.

3.2 Mining Java Class Naming Conventions

Another notable project examines the naming
conventions of Java classes [2]. The authors
looked at 60 open source Java projects. They
identified 120,000 unique class names across
those projects. They found that the class iden-
tifiers often share a substring with their parent
or children classes. They also do identification
on poor naming patterns. Unfortunately, the
authors do not examine all identifier types
(notably variables and methods).

3.3 Restructuring Source Code Identifiers

An extremely relevant paper [5] attempted to
discover what identifier features correlate with
high confusion in readers. They found that fault
proneness has a high relation to high term
entropy and high context-coverage.

Fault proneness is the potential for a segment
of code to be confusing, and is measured by
third-party applications Rhino and ArgoUML.
Term entropy increases with probability distri-
bution, so if an identifier is used often then
it has high term entropy. Context-coverage in-
creases as an identifier is used in different
contexts. If a term is only used in loops (a
specific type of context) then it has low context-
coverage. The authors determined that an iden-
tifier must be rarely used and only within a few
number of contexts in order for it to produce
minimal confusion in readers. The authors do
not look into other features about identifiers
that are specific to naming conventions.

4 CORPUS
4.1 Repositories

Seven repositories are pruned and parsed using
regular expressions on December 2014. These
seven repositories include the implementations
for git (a version control system), sci-kit learn
(a machine learning library for python), PHP
(the language interpreter), redis (an in-memory
database), Arduino (an application for electron-
ics prototyping), macvim (a text editor specifi-
cally for mac), and dynomite (a database imple-
mentation based on the Dynamo whitepaper)
[4]. These repositories feature a wide range of
applications. The corpus utilizes the code writ-
ten by over 1,603 authors and 17,152 uniquely
named identifiers.

4.2 Type Breakdown

The breakdown of types of identifiers is dis-
played in both Fig. 1 and Fig. 2.

Identifier Type Breakdown

B int

M signed
long

B float

M register

M char

M unsigned

B double

M typedef

B enum
static

B struct

B void

B short

B volstile
Other

Fig. 1. Identifier Type Breakdown Pie Chart.

This breakdown gives some information
about the corpus. The most notable type is
the int datatype, as it is highly prevalent with
43,191 cases (non-unique). The next most com-
mon identifier type is char with 29,733 cases.



CSC 582 - FALL 2014

Keyword Count Keyword Count Keyword Count
int 43191 char 29733 static 14849
signed 13125 unsigned 12676 struct 11673
long 5071 double 3876 void 3026
float 2272 typedef 1592 short 1296
register 1020 enum 421 volatile 231
union 68 extern 33

Fig. 2. ldentifier Type Breakdown Table.

Static identifiers are also very common. Inter-
estingly, there is an almost even split between
signed and unsigned types.

4.3 Parts of Speech

Part of Speech Breakdown

Noun singular (NN ]

Adjective (JJ

verb, past tense (VBD)

verb, past participle (VBN
adverb (RB

proper noun, singular (NNP|
preposition (IN

Noun plural (NNS

verb, gerund/present participle (VBG
verb, sing. present, non-3d (VBP!
verb, base form (VB

)
)
)
)
)
)
)
)
)
)

] 400 800 1200 1600

Fig. 3. Parts of Speech Breakdown Chart.

Part of Speech Count
MNoun singular (NN) 1294
Adjective (JJ) 145
verb, past tense (VBD) 78
verb, past participle (VBN) 55
adverb (RB) 50
proper noun, singular (NNP) 42
preposition (IN) 36
MNoun plural (NNS) 38
verb, gerund/present participle (VBG) a7
verb, sing. present, non-3d (VBP) 25
verb, base form (VB) 18

Fig. 4. Parts of Speech Breakdown Table.

The NLTK corpus of words [1] is used to
determine the existence of unique dictionary
words combined with the use of regular ex-
pressions during parsing. Fig. 3 and Fig. 4
displays the breakdown of parts of speech (PoS)
tags within the corpus. This breakdown is de-
termined through NLTK’s PoS tagger. These
figures omit tags that were featured less than
10 times.

Singular nouns are clearly the most com-
mon, with adjectives being a significantly less
common second. The most noticeable break-
down here is the different between the types of
verbs. Of all unique verbs, the past tense and
past-participle forms are much more common
(about twice) as the present participle, base,
and present tense forms.

4.4 Case

Case Breakdown

B snake case
B camelCase
other

Fig. 5. Case Breakdown Table.

The corpus features 17,152 unique identifiers.
Of these identifiers, 1,843 are camelCase and
10,691 are snake_case. This shows a heavy
favoritism across authors towards snake case.
The remaining identifiers that are not counted
did not show features of either style. This
breakdown is displayed in Fig. ??

4.5 Dictionary Words

The total number of dictionary words in this
corpus amounts to 10,886. The average length
of each dictionary word is 5.79. The longest



CSC 582 - FALL 2014

word in this corpus, authentication, is 14 char-
acters. Of all identifier, 65.08

5 IMPLEMENTATION
5.1 Naive Bayes Classifier

The rest of this paper is focused on the use
of this corpus to show trends in identifiers
based on the repository. It is proposed that
naming conventions may be identifiable based
on the corpus. The NLTK implementation of
a Naive Bayes classifier is used [1]. This is
based on the Bayes’ Theorem which assumes
that specific events (the classes) are statistically
independent.

5.2 Features

Numerous features are used in this implemen-
tation. For each identifier, a list is created of
binary and numeric values for each feature. The
binary existence of a keyword type used on
each identifier (int, char, etc.) composes part
of this feature list. The binary existence of a
specific case (snake_case, camelCase, and CON-
STANT) is also part of this feature list. The total
count of dictionary words found within the
identifier is included. Also the specific count of
each part of speech tag (NN, JJ, etc.) is included
for each tag.

6 RESULTS
6.1 Distribution

The Naive Bayes classifier [1] is used to de-
termine how many repositories an identifier
is part of. This shows that the previously de-
scribed features have some way of representing
the distribution of an identifier. There are seven
possible classes in this case, as there are seven
repositories. This creates a 17% baseline of ran-
domly guessing the number of repositories.
Two experiments are ran, one with a 50/50%
training and testing dataset split and another
with a 66-33% training and testing dataset split.
Each experiment is ran five times and the re-
ported accuracies are an average of those five
runs. The identifiers included in each dataset
are created randomly. For a 50/50% split, the
average accuracy is 88.39%. For a 66/33%

dataset split, the average accuracy is 91.16%.
These high accuracy (compared to the baseline)
determine that there is a strong relationship
between the defined features and the common-
ality of these identifiers.

6.2 Repository Identification

The next set of experiments try to name the
specific repositories that an idenfier is found in.
This creates 5,040 unique classes based on the
different combinations of these repositories. For
example, on class may be just the git repository,
and another may be the git repository and the
sci-kit learn repository. This experiment is run
tive times, and a 50/50% training and testing
dataset split is used. The averaged accuracy is
36.54%. This accuracy demonstrates that there
is a strong relationship between these features
and the specific distribution and authors of
each repository. It is notable that the distribu-
tion may not be even, as some common iden-
tifier are included across all seven repositories
and other identifiers are less common and are
only included in one repository.

6.3 Proposed Naming Convention

This section defines the proposed naming con-
vention based on the data acquired from open
source C language code and a variety of
authors. The ruleset dictates that snake case
should be used over other cases. In support
of the self-describing style, abbreviations and
short identifiers are not allowed. This is slightly
supported by the corpus. The corpus strong
supports the use of adjectives and singular,
non-proper nouns. The corpus also supports
the use of paste tense and paste participle verbs
over the use of all other forms of verbs. Lastly,
the ruleset for this naming convention dictates
that identifiers should strive to use dictionary
words around six characters in length, and that
all identifier should be under 14 characters.

7 FUTURE WORK

There is significant room for growth in under-
standing naming conventions.

Due to the limitations of the available re-
sources, the corpus proposed here is not as



CSC 582 - FALL 2014

large as it could be. There are several linux
distributions which should be included in this
corpus, but are enormous and had to be left
out.

There is also a need for individual authorship
identification not just repository identification.
The GitHub API [4] supports this, and there is
a lot of previous work in this field [11] [6] [7].

The work done in fault tolerance [5] could be
cross-referenced with the naming convention
features described in this paper. It would be
interesting to see how these features, such as
lack of dictionary words and length, trend with
fault tolerance.

Futher work could be done in parts of speech
n-grams. What is highly likely is the bigram
of adjective and singular, non-plural noun for
identifiers. Other n-grams may be common and
it would be beneficial to see what those are.

An obvious extension of this work would
be to create more corpora based on other lan-
guages and determine a naming convention
based on those corpora. These corpora could
also be used to determine other features and
do feature analysis to determine which ones are
particularly relevant.

8 CONCLUSION

The corpus defined in this paper is the col-
lective work of 1,603 unique authors. Together
they have helped define a new naming con-
vention for the C programming language that
supports the self-describing style of coding. The
most notable find of this corpus is the high use
of past tense and past participle verbs over all
other verb forms. A Naive Bayes classifier is
used to determine that the features identified
in this paper have a high correlation to specific
repositories.

ACKNOWLEDGMENTS

The author would like to thank Dr. Foaad Khos-
mood for teaching Natural Language Process-
ing (CSC 582) at Cal Poly San Luis Obispo. Also
thanks to the Computer Science Department at
Cal Poly San Luis Obispo, whose facilities and
administration made this possible. The author
would also like to thank GitHub and the pro-
grammers who contributed to the corpus.

REFERENCES

[1] Bird, Steven. "NLTK: the natural language toolkit.” Pro-
ceedings of the COLING/ACL on Interactive presentation
sessions. Association for Computational Linguistics, 2006.

[2] Bulter, Simon, et. al. "Mining Java class naming con-
ventions.” Software Maintenance (ICSM), 2011 27th IEEE
International Conference on. IEEE, 2011.

[3] Byun, JeongHoon, et. al. "Popular Convention.” 2013.
Available: http://sideeffect.kr/popularconvention/

[4] Doll, Brian. “The GitHub Data Challenge II.” GitHub.
2013.

[5] Eshkevari, Laleh Mousavi. “Restructuring Source Code
Identifiers.” 2010.

[6] Kilgour, R. I, et al. ”A fuzzy logic approach to computer
software source code authorship analysis.” (1998).

[7] Kothari, Jay, et al. ”A probabilistic approach to source code
authorship identification.” Information Technology, 2007.
ITNG’07. Fourth International Conference on. IEEE, 2007.

[8] Kuhn, Adrian, Stphane Ducasse, and Tudor Grba. "Seman-
tic clustering: Identifying topics in source code.” Informa-
tion and Software Technology 49.3 (2007): 230-243.

[9] McConnell, Steven C. "Code Complete.” 2003.
[10] Oracle. "Naming Conventions.” Sun Microsystems, 1999.

[11] Spafford, Eugene H., and Stephen A. Weeber. “Software
forensics: Can we track code to its authors?.” Computers
and Security 12.6 (1993): 585-595.

[12] Wilde, Norman, and Ross Huitt. "Maintenance support
for object oriented programs.” Software Maintenance,
1991., Proceedings. Conference on. IEEE, 1991.

Luke Plewa Luke Plewa is a student at Cal Poly pursuing a joint
BSMS degree for Computer Science. His other works include
progress made in computer architecture, OpenGL video games,
Android applications, and machine learning.



