
Luke Plewa
3 graphics technologies: specialized graphics feature - map editor

keyframe animation
level of detail – mesh simplification

Mesh Simplification Algorithm:
implementation contained in src/mesh.cpp: void myMesh::simplify()

Simplify the mesh by removing the faces which share the smallest edges. I pick a good
minimum size for an edge (after testing I chose 0.35f), and remove all faces who share edges which are
smaller than that. The vertices which were part of those shared edges are then replaced by the midpoint
of the edge. This implementation reduces the number of faces but doesn't reduce the number of
vertices. The simplified model is swapping with the high resolution model when the player is far away
from the position of the models.
for all faces i, j

if i!=j && !marked[i] && !marked[j] // marked when already decimated faces
for all vertices m, n on faces i, j

if m == n count++ // the faces share a vertex
if count > 2 // the faces share 2 vertices aka an edge

if length of edge < min edge length // min edge length is a preset constant
vertices[p1 of edge] = midpoint of p1,p2
vertices[p2 of edge] = midpoint of p1,p2
marked[i] = true
marked[j] = true

for i in all marked
if marked[i]

faces[i].remove // remove faces whose edges have been collapsed

Results: these get printed on every run to show the difference in faces removed
Ninja Current size: 11594. New size: 6781
Territory Current size: 1504. New size: 1376
Tower Current size: 41688. New size: 21443
Sentry Current size: 4736. New size: 3646
Sword Current size: 1856. New size: 1081

The original mesh is on the left, the simplified mesh is on the right
These meshes have a difference of 1,090 faces!

Sources: http://www.cse.psu.edu/~shontz/imr_2012.pdf
CPU-GPU Algorithms for Triangular Surface Mesh Simplification (Shontz, Nistor 2012)

http://www.cse.psu.edu/~shontz/imr_2012.pdf

The Code:
void myMesh::simplify()
{
 printf("Current size: %d. ", mFaces.size());
 printf("Starting mesh simplification... ");
 int count; // the num of shared vertices * 2
 int p1, p2; // the numbers of the vertices to be replaced
 bool *marked = (bool*)malloc(sizeof(bool)*mFaces.size()); // a face has been marked
 float diff = 0; // the length of the edge for comparison
 int count_min = 2; // the faces share 2 points each
 int temp_point = 0; // temporary point
 float min_edge_distance = Constants::getInstance().getValue("mesh_decimation_limit");
 glm::vec3 A, B, midpoint;

 for(int i=0; i<mModel->mVertices.size(); i++){
 mVertices.push_back(mModel->mVertices[i]);
 }
 for(int i=0; i<mFaces.size(); i++){
 marked[i] = false;
 }

 //iterate over all faces
 for(int j=0; j<mFaces.size(); j++){
 for(int i=0; i<mFaces.size(); i++){
 if(i != j && !marked[i] && !marked[j]){
 count = 0; // check if they share an edge (share two vertices)
 for(int v=0; v<3; v++){ // iterate through vertices
 for(int n=0; n<3; n++){
 temp_point = mFaces[j].V[v].mVertex;
 if(count < 2 && temp_point == mFaces[i].V[n].mVertex){
 if(count == 0) p1 = temp_point;
 else if(p1 != temp_point) p2 = temp_point;
 else count--;
 count++;
 }
 }
 }
 if(count >= count_min){ //create midpoint of vertices
 A = mModel->mVertices[p1-1]; // shared point 1
 B = mModel->mVertices[p2-1]; // shared point 2
 midpoint = vec3(0.5f*(A.x+B.x),
 0.5f*(A.y+B.y),
 0.5f*(A.z+B.z));
 if(length(A - B) <= min_edge_distance){
 mVertices[p1-1] = midpoint;
 mVertices[p2-1] = midpoint;
 marked[i] = true; //mark the faces for removal, because the 2 points have been collapsed
 marked[j] = true;
 }

 }
 }
 }
 }
 // delete the marked faces
 int x = 0; // the offset count because we are removing elements
 for(int j=0; j<mFaces.size(); j++){
 if(marked[j]){
 mFaces.erase(mFaces.begin()+x); // remove marked faces
 x--;
 }
 x++;
 }
 printf("...finished mesh simplification. ");
 printf("New size: %d\n", mFaces.size());
}

